
2021-06-01

REST API v1
For use with:

https://openbadgefactory.com
https://factory.cancred.ca

Authentication

OAuth2 Client Credentials

OAuth2 bearer token authentication is available at Pro level subscription. This is the
preferred method to access the API.

1. Get your API client_id and client_secret

Login to OBF as a user in admin role and got to Admin tools > API. Generate new client
secret and give it an informative description that helps you identify it later. Note that the
secret string is shown one time only, you must copy and store it at this point.

The client_id string identifies your organisation and it is used in most API route URLs.

2. Request an access token

POST /v1/client/oauth2/token

Body parameters:

Parameter Type Description

grant_type String (required) The grant type parameter must be set to
"client_credentials"

client_id String Client credentials you obtained in step one.

client_secret String

Client credentials can be either included as POST body parameters or in HTTP Basic auth
header.

Response JSON:

{
"access_token": "{your access token}",
"token_type": "bearer",
"expires_in": 36000

}

You can use the same access token until it expires. Expiration time is short and you need to
fetch a new access token after the old one becomes invalid.

The same client credentials can be used until your subscription to our service ends. You can
view the list of generated keys in Admin tools > API and also revoke old credentials if
necessary.

3. Test your access token

Include your newly created access token in request Authorization header:

Authorization: Bearer {your access token}

Run a test request:

GET /v1/ping/{$client_id}

Successful request will have return code 200 OK and the response body echoes back your
client id.

Example, using curl:

$ curl -H "Authorization: Bearer $access_token" \
"https://$hostname/v1/ping/$client_id"

More info:

https://www.oauth.com/oauth2-servers/access-tokens/client-credentials/

https://www.oauth.com/oauth2-servers/access-tokens/client-credentials/

Client side certificates

X.509 client side certificates can be used to authenticate you and authorize API calls. The
procedure for creating your certificate is as follows:

1. Get your API key
Login to OBF as a user in admin role and got to Admin tools > API key > Legacy. You need
this token for generating your certificate signing request. The generated token will be valid
for ten minutes. After that it cannot be used for certificate signing.

2. Get our public RSA key

GET /v1/client/OBF.rsa.pub

3. Decode your API key with our public key

in Perl:

my $key = Crypt::OpenSSL::RSA->new_public_key($pubkey);

$key->use_pkcs1_padding;

my $decrypted = $key->public_decrypt(decode_base64($apikey));

my $json = decode_json($decrypted);

in PHP:

$key = openssl_pkey_get_public($pubkey);

$decrypted = '';

openssl_public_decrypt(
base64_decode($apikey), $decrypted, $key, OPENSSL_PKCS1_PADDING

);

$json = json_decode($decrypted);

4. Generate your Certificate Signing Request with your decoded API key

API key JSON object has the following structure:

{
"id": "...", // your client id
"subject": "...", // your certificate subject line
"ctime": "...", // timestamp
"nonce": "..." // security nonce

}

Id parameter is your client id in OBF. Save it for later use.

Use the subject parameter as the subject line in your CSR. (Command line OpenSSL used
in this example.)

$ openssl req -new -nodes -batch -days 1095 -newkey rsa:2048 \
-keyout /tmp/obf-test.key -subj '$PAYLOAD_SUBJECT' \
> /tmp/obf-test.csr

5. Send your CSR for signing

POST /v1/client/{$client_id}/sign_request

{
signature => "...",
request => "..."

}

Make a POST request with a JSON string as body content. Signature parameter is the
base64-encoded api key you got from our admin panel (in step 1.) Just send it back as-is,
without changes.

Request parameter is your certificate signing request file contents. Successful signing
operation will have return code 200 OK and the response body contains your new
certificate.

6. Store your certificate and private key for future use

You need your certificate and private key with every API call. Store the files securely and
grant appropriate file system permissions.

Also, remember to save your client id.

7. Test your keypair

Include your newly created keypair in your user agent (see examples below) and run a test
request:

GET /v1/ping/{$client_id}

Successful request will have return code 200 OK and the response body echoes back your
client id.

Check your platform docs for the usage of client side certificates. Here are some examples.
Perl, with LWP:

my $ua = LWP::UserAgent->new;

$ua->ssl_opts(
SSL_verify_mode => 'SSL_VERIFY_PEER',
SSL_key_file => '/path/to/your/private.key',
SSL_cert_file => '/path/to/your/certificate.pem'

);

my $res = $ua->get("https://$hostname/v1/ping/" . $client_id);

Expected results:
$res->code == 200
$res->content eq $client_id

PHP, with cURL:

$ch = curl_init();

$options = array(
CURLOPT_RETURNTRANSFER => true,
CURLOPT_SSL_VERIFYHOST => 2,
CURLOPT_SSL_VERIFYPEER => true,
CURLOPT_HEADER => false,

CURLOPT_URL => "https://$hostname/v1/ping/" . $client_id,
CURLOPT_SSLCERT => '/path/to/your/certificate.pem',
CURLOPT_SSLKEY => '/path/to/your/private.key',

);

curl_setopt_array($ch , $options);

$result = curl_exec($ch);
$info = curl_getinfo($ch);

curl_close($ch);

/*
* Expected results:
* $info['http_code'] == 200
* $result == $client_id
*/

Formats and encodings

Unless otherwise noted, all input and output is JSON encoded. String encoding is always
UTF-8.

Lists of objects are returned as Line Delimited JSON:

{"key1":"...","key2":"..." ... ,"keyX":"..."}\r\n
{"key1":"...","key2":"..." ... ,"keyX":"..."}\r\n
{"key1":"...","key2":"..." ... ,"keyX":"..."}\r\n
{"key1":"...","key2":"..." ... ,"keyX":"..."}\r\n

Badge Operations

Create new badge

POST /v1/badge/{client_id}

Input JSON object parameters:

Parameter Type Description

name String (required) Name of the badge.

description String (required) Description of the badge.

image String Base64 encoded PNG image data.

css String Criteria page styles.

https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON

criteria_html String Criteria page HTML.

email_subject String Email chunks for badge issuing message.

email_body String

email_link_text String

email_footer String

expires Int Unix timestamp for optional badge expiration
date.

tags Array Array of strings representing badge tags.

draft Boolean (required) Badge status.

metadata Object Custom badge metadata. Optionally you can
define your platform-specific metadata and
store it with the badge. This field can be used
to store any valid JSON object. The data is
used internally only and it won’t be present in
issued badges.

Update badge

PUT /v1/badge/{client_id}/{badge_id}

Same input parameters as create. Doesn’t affect already issued badges.

Delete badge

After deletion a badge is no longer available for issuing. Doesn’t affect already issued
badges.

Delete all badges:

DELETE /v1/badge/{client_id}

Delete single badge:

DELETE /v1/badge/{client_id}/{badge_id}

Get badges

Single badge by id:

GET /v1/badge/{client_id}/{badge_id}

All badges:

GET /v1/badge/{client_id}

Optional query parameters:

Parameter Type Description

draft (0, 1) Allows you to filter badges by status. If not present, all badges
are returned.

category String Badges can belong in one or more categories. These are used
for internal purposes only and are different from OBI badge
tags. Multiple categories can be separated in query by pipe
sign.

id String List of badge ids to fetch, separated by pipe sign.

query String Search badges by name or description.

meta:{key} String Filter badges by custom metadata.

external (0, 1) Filter badges marked for external access. This is an advisory
flag that badge creators can set for badges to be used via API.

Available badge categories in search:

GET /v1/badge/{client_id}/_/categorylist

Metadata search example:

Given badge metadata field:

{"foo":123, "bar":456, "baz":"quux"}

Matching query:

?meta:foo=123&meta:baz=quux

No match:

?meta:foo=124

Issue badge

When you issue a badge your recipients will get an email message containing an url where
they can accept the badge and add it to their passport or backpack.

POST /v1/badge/{client_id}/{badge_id}

Input JSON object parameters:

Parameter Type Description

recipient Array (required) List of recipient email addresses.

expires Int Unix timestamp for optional badge expiration.

issued_on Int Unix timestamp, current time is used by default.

email_subject String Email chunks for badge issuing message. Required,
unless the message has been stored with the
badge.email_body String

email_link_text String

email_footer String

badge_override Object Overrides badge data for this particular issuing
event. Allowed keys:

● name
● description

● criteria
● tags

Values provided here will replace the content of the
badge. In addition, key criteria_add can be used to
append content to the original criteria text.

log_entry Object A log entry object of unspecified format can be
saved along the issuing event.

api_consumer_id String Parameter identifying this client.

send_email (0, 1) Send/don't send email messages to badge
recipients. If value is 0, you must provide a way for
users to get their badges. Default value 1.

Return code: 201 Created

Location response header field contains the url of this issuing event.

Badge revocation
After you revoke a badge, GET requests to it’s assertion url will return 410 Gone response.
This tells displayers that the badge is no longer valid.

Badges are revoked with an issuing event id and one or more recipient email addresses. If a
recipient has been issued the same badge multiple times, only the one identified by event id
is revoked.

See Report section of this document for more information on issuing event operations.

Revoke a badge:

DELETE /v1/event/{client_id}/{event_id}/?email=foo@example.com

DELETE
/v1/event/{client_id}/{event_id}/?email=foo@example.com|bar@example.
com|quux@example.com

Return code: 204 No Content

Get revoked badges:

GET /v1/event/{client_id}/{event_id}/revoked

Sample output:

{
"revoked": {

/* recipient email and revocation timestamp */
"foo@example.com": 1434971021,
"bar@example.com": 1434971020,
...

}
}

Issuer Operations

Get own data

GET /v1/client/{client_id}

Update own data

PUT /v1/client/{client_id}

Input JSON object parameters:

Parameter Type Description

url String (required) Issuing organization’s web address.

description String (required) Description of the issuer.

email String (required) Canonical email address of the issuer.

image String Base64 encoded image representing the issuer, a
logo.

Badge Applications

Get earnable badges

List all:

GET /v1/earnablebadge/{client_id}

Query parameters:

Parameter Type Description

badge_id String Find by badge id.

appoval_method (“review”, “instant”, “secret”, “peer”) Find by approval method.

visible (0, 1) Filter by visibility status.

client_alias String Filter by client alias id.

Single earnable badge by id:

GET /v1/earnablebadge/{client_id}/{earnable_id}

Get applications

List all applications to a badge:
GET /v1/earnablebadge/{client_id}/{earnable_id}/application

Query parameters:

Parameter Type Description

status (“approved”, “pending”, “rejected”) Filter by application status.

Single application by id (contains application form data):

GET /v1/earnablebadge/{client_id}/{earnable_id}/application/{ap_id}

Process applications

Approve or reject:

PUT /v1/earnablebadge/{client_id}/{earnable_id}/application/{ap_id}

Input JSON object parameters:

Parameter Type Description

result (“approve”, “reject”) Result of assessment.

reviewer String Reviewer’s identification string.

expires Int Approval parameters, see badge issuing
section for details.

issued_on Int

email_subject String

email_body String

email_link_text String

email_footer String

log_entry Object

api_consumer_id String

If an application is rejected, you can optionally send a rejection message using
email_subject and email_body parameters. Other issuing parameters are not used in
this case.

Reports

Get issuing events

Single event by id:
GET /v1/event/{client_id}/{event_id}

Search for events:
GET /v1/event/{client_id}

Query parameters:

Parameter Type Description

api_consumer_id String Filter by issuer plugin id.

badge_id String Filter by badge id.

email String Filter by recipient email address.

begin Int Filter by issuing event date range. Unix
timestamps.

end Int

order_by (“asc”, “desc”) Order results by date, ascending or
descending.

limit Int Maximum number or results to return,
upper limit 1000.

offset Int Skip a number of events. Used with limit
parameter when paginating results.

count_only (0, 1) If true, the query returns only the number
of results found with given parameters.

Get badges and assertions

Download issued badges in different formats:
GET /v1/event/{client_id}/{event_id}/assertion

Query parameters:

Parameter Type Description

email String Filter by recipient email address (optional, use | to
separate multiple addresses).

Sample output, multilingual badge:

// PDF download links for a multilingual badge
{

"id": "assertion_id_1",
"image": "{image url 1 }",
"json": "{assertion url 1}",
"pdf": {
"en": "{PDF file url 1 - en}",
"fi": "{PDF file url 1 - fi}",
"fr": "{PDF file url 1 - fr}",
"sv": "{PDF file url 1 - sv}",

},
"recipient": "user1@example.com",
"status": "unknown"

}
...
{

"id": "assertion_id_X",
"image": "{image url X}",
"json": "{assertion url X}",
"pdf": {
"en": "{PDF file url X - en}",
"fi": "{PDF file url X - fi}",
"fr": "{PDF file url X - fr}",
"sv": "{PDF file url X - sv}",

},
"recipient": "userX@example.com",
"status": "accepted"

}

Sample output, single-language badge:

// PDF download links for a single-language badge
{

"id": "assertion_id_3",
"image": "{image url 3}",
"json": "{assertion url 3}",
"pdf": {
"default": "{PDF file url 3}",

},
"recipient": "user3@example.com",
"status": "accepted"

}
...
{

"id": "..."
}

JSON and image formats can be downloaded without an API key. Image and PDF files
contain baked Open Badge metadata.

PDF downloads are rate-limited to one download/second. PDF format is available on special
subscription level. Please contact our sales team for more information.

Return codes

200 OK
Successful GET responses.

201 Created
Resource created successfully. Check Location header field for new id. Response body
will be empty.

204 No Content
Successful PUT and DELETE responses.

Errors

400 Bad Request
Invalid parameter(s), e.g. missing or of wrong type.

403 Forbidden
Client is not authorized to access resource.

404 Not Found
Requested resource cannot be found.

405 Method Not Allowed
HTTP method is not supported/recognized

411 Length Required
POST or PUT request length missing.

413 Request Entity Too Large
POST and PUT requests are limited to maximum size of 67108864 bytes.

429 Too Many Requests
Too many API calls per second. Check Retry-After header for cooldown time (in seconds).

495 Cert Error
Invalid client side certificate.

496 No Cert
Certificate missing.

500 Internal Server Error
Unexpected fatal error, a bug.

503 Service Unavailable
The service is temporarily closed for maintenance or other reasons. Client should retry the
request after a short period.

Changes

2021-06-01

● Get all badges, added external filter parameter
● Added badge tag list to GET /v1/earnablebadge/{client_id}

2021-03-23

● Issue badge, added send_email parameter
● Added received status to GET /v1/event/{client_id}/{event_id}/assertion

